1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
| from Crypto.Util.number import long_to_bytes
p = 219054411990148289470292997530776820099
xs = [8491960647856250964788524618271700685, 71795891239628473345986467501840944053, 156002976606013829072222795906955056490, 53087364639737298031576707773864444526, 168655802716010735307052122673425704476]
cs = [8121914627778545197804323606326110761, 35945001560092599768837547895125753710, 145323007892377441978764394884664054314, 151317673926254356634302814424738532048, 66863154042339327032435896661285289022]
def mod_inv(a, p): return pow(a, p-2, p)
def gauss_elim(A, b, p): n = len(A) M = [A[i] + [b[i]] for i in range(n)] for k in range(n): pivot = k for i in range(k, n): if M[i][k] != 0: pivot = i break else: return None M[k], M[pivot] = M[pivot], M[k] inv_pivot = mod_inv(M[k][k], p) for j in range(k, n+1): M[k][j] = (M[k][j] * inv_pivot) % p for i in range(n): if i == k: continue factor = M[i][k] for j in range(k, n+1): M[i][j] = (M[i][j] - factor * M[k][j]) % p return [M[i][n] for i in range(n)]
n = 5 A = []
for i in range(n): row = [] for j in range(n): row.append(pow(xs[i], j, p)) A.append(row)
coeff = gauss_elim(A, cs, p) flag = b''
for c in coeff: flag += long_to_bytes(c)
print(flag.decode())
|